A recursive construction of the regular exceptional graphs with least eigenvalue –2
نویسندگان
چکیده
منابع مشابه
Distance-regular Cayley graphs with least eigenvalue -2
We classify the distance-regular Cayley graphs with least eigenvalue −2 and diameter at most three. Besides sporadic examples, these comprise of the lattice graphs, certain triangular graphs, and line graphs of incidence graphs of certain projective planes. In addition, we classify the possible connection sets for the lattice graphs and obtain some results on the structure of distance-regular C...
متن کاملOn distance-regular graphs with smallest eigenvalue at least -m
A non-complete geometric distance-regular graph is the point graph of a partial geometry in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for fixed integer m ≥ 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least −m, diameter at least three and intersection number c2 ≥ 2.
متن کاملNotes on graphs with least eigenvalue at least -2
A new proof concerning the determinant of the adjacency matrix of the line graph of a tree is presented and an invariant for line graphs, introduced by Cvetković and Lepović, with least eigenvalue at least −2 is revisited and given a new equivalent definition [D. Cvetković and M. Lepović. Cospectral graphs with least eigenvalue at least −2. Publ. Inst. Math., Nouv. Sér., 78(92):51–63, 2005.]. E...
متن کاملExceptional Graphs with Smallest Eigenvalue -2 and Related Problems
This paper summarizes the known results on graphs with smallest eigenvalue around -2 , and completes the theory by proving a number of new results, giving comprehensive tables of the finitely many exceptions, and posing some new problems. Then the theory is applied to characterize a class of distance-regular graphs of large diameter by their intersection array.
متن کاملThe Least Eigenvalue of Graphs
In this paper we investigate the least eigenvalue of a graph whose complement is connected, and present a lower bound for the least eigenvalue of such graph. We also characterize the unique graph whose least eigenvalue attains the second minimum among all graphs of fixed order.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Portugaliae Mathematica
سال: 2014
ISSN: 0032-5155
DOI: 10.4171/pm/1942